Auxiliary Deep Generative Models

نویسندگان

  • Lars Maaløe
  • Casper Kaae Sønderby
  • Søren Kaae Sønderby
  • Ole Winther
چکیده

Deep generative models parameterized by neural networks have recently achieved state-ofthe-art performance in unsupervised and semisupervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge faster with better results. We show state-of-theart performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Semi-Supervised Learning with Auxiliary Deep Generative Models

Abstract Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary var...

متن کامل

Deep Regression Bayesian Network and Its Applications

Deep directed generative models have attracted much attention recently due to their generative modeling nature and powerful data representation ability. In this paper, we review different structures of deep directed generative models and the learning and inference algorithms associated with the structures. We focus on a specific structure that consists of layers of Bayesian Networks due to the ...

متن کامل

LOGAN: Evaluating Privacy Leakage of Generative Models Using Generative Adversarial Networks

Recent advances in machine learning are paving the way for the artificial generation of high quality images and videos. In this paper, we investigate how generating synthetic samples through generative models can lead to information leakage, and, consequently, to privacy breaches affecting individuals’ privacy that contribute their personal or sensitive data to train these models. In order to q...

متن کامل

Training opposing directed models using geometric mean matching

Unsupervised training of deep generative models containing latent variables and performing inference remains a challenging problem for complex, high dimensional distributions. One basic approach to this problem is the so called Helmholtz machine and it involves training an auxiliary model that helps to perform approximate inference jointly with the generative model which is to be fitted to the ...

متن کامل

Bidirectional Helmholtz Machines

Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine or Variational Autoencoder, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016